IMPROVING SAFETY PROVISIONS OF STRUCTURAL DESIGN OF CONTAINMENT AGAINST EXTERNAL EXPLOSION

Submitted by

Dr. Javed Iqbal,

Principal Engineer, PAEC, Islamabad, Pakistan

Dr. Saeed Ahmad,

Professor of Civil Engineering, UET Taxila, Pakistan

INTRODUCTION

• The work deals with the experimental determination of relationships of simultaneous ground shock and airblast parameters against impulsive loading.

• The empirical relationships of peak air pressure, peak reflected airblast pressure along the height of the structure, peak ground acceleration, arriving shock of ground shock, duration of ground shock and the time lag between ground shock and airblast pressure reaching the concrete structure etc. on a Reinforced Concrete containment scaled model owing to a surface explosion at a certain distance have been established.

Factors affecting Blast Loading **On Reactor Containment**

1) The magnitude of the explosion.

2) The location of the explosion relative to the structure in question i.e. unconfined or confined explosions.

- The unconfined explosions include free air burst explosion, surface burst explosion.
- The confined explosions include fully vented explosions, partially confined explosions, fully confined explosions.
- 3) The geometrical configuration of the structure.
- 4) The structure orientation with respect to the explosion and the ground surface

Scope of Impulse Loads in ACI

- ACI Standard 359 "Code for Concrete Reactor Vessels and Containments" deals with the impulse loads as time dependent loads e.g. the dynamic effects of accidental pressure P_a , the effects of pipe rupture reactions $R_{\rm rr}$ and Jet impingement loading $R_{\rm ri}$
- The U.S. Nuclear Regulatory Guides does not require consideration of explosions due to terrorist attack and other act of war in the design of Nuclear Power Plant

Relationships between Scale Model And Full Scale Parameters

Scale-model experiments may be used to study the explosions effect, but scaling effects must be considered in interpreting the results

Parameter value	Full-scale value	Scale-model
 Dimension 	X	Sx
Area	A	S ² A
 Volume 	V	S ³ V
 Charge weight 	Q	S ³ Q
Charge standoff	R	SR
 Scaled standoff 	$R/Q^{1/3} = Z$	$SR/(S^3Q)^{1/3} = Z$
Pressure	P	P
 Impulse / unit are 	ea /	SI
 Velocity 	V	V

Experimental Set Up & Explosion Scenario

	pical Experimental Values of Shock Wave opagation in the Air from various Charge Weights							
<i>R</i> (m)	Q(kg)	P _{so} (Mpa)	T _a (msec)	T _r (msec)	T _d (msec)	T (msec)	P _{ro} (msec)	
5	1	0.047	8	13	1	14	0.033	

Developed Re	ationship	S
Peak Air Pressure in the air		
<i>P</i> _{so} = 1.017 (<i>R</i> / <i>Q</i> ^{1/3)-1.91}	(MPa)	12 ≥ <i>R/Q</i> ^{1/3} ≥1
The Shock Wave Front Arrival Tim	e	
$T_{\rm a} = 0.40 \ R^{1.2} \ Q^{-0.2} / C_{\rm a}$	(s)	

No. No.	a state	- James Alter	A second second	in warment	State prices out and										a ' a (/
	2		1.		*	10	3	0.025	15	17	3	20	0.015	III.	The Duration of the Positive Pressure Phase of the Shock Wave
-	A		1 1			15	5	0.016	22	22	4	26	0.008		$T_{+} = T_{r} + T_{d} $ (s)
A			1: 12			20	15	0.018	25	20	7	27	0.010		$T_r = 0.0026 (R / Q^{1/3})^{0.98}$
			1.			20		0.010	23	20	/	~ /	0.010		$T_d = 0.0003 (R / Q^{1/3})^{0.89} Q^{0.47}$ $T_+ = 0.0026 (R / Q^{1/3})^{0.98} + 0.0003 (R / Q^{1/3})^{0.89} Q^{0.47}$
						25	25	0.017	29	21	9	30	0.008		$T_{+} = 0.0026 (R / Q^{1/3})^{0.98} + 0.0003 (R / Q^{1/3})^{0.89} Q^{0.47}$
										D					
Турі	cal Exp	erimenta	al Value	s Of Gro	ound			rison O							Comparison Of Peak Pressure Attenuation
Sh	ock witl	h Variou	is Char	ge Weig	hts	Aga	iinst Sc	aled Di	Istanc		Other	r Rese	arcner		gainst Scaled Distance With Other Researche
D(m)	O(ka)	D / O 1/3	PPA												
<i>R</i> (m)	Q (Kg)	R/Q ^{1/3} (m/Kg ^{1/3})		(msec)	(msec)	10		Experimenta	al						10 Experimental
						(WPa)		results	Broc	le's results				(MPa)	1 results Brode's results
5	1	5	5.6	3	13	Pso (Pso (
10	3	6.96	6.5	7	19	e 0.1	Chengqing	g's) sure	0.1 Chengqing's
10						sud 0.01	results							x bres	.01
15	5	8.82	6.3	11	24	Peak			Henry					Peak	Henrych's
20	1 -	0.64	10.0	1 -	20	0.001			result	5 10				0.0	001 results
20	15	8.64	12.3	15	28		1	See	lad range [10 R/Q ^{1/3} (m/K	1/3		10	00	I IO Scaled range R/Q ^{1/3} (m/Kg ^{1/3})
25	25	6.87	14.9	20	32			Scar	led range r	≺/Q (m/∧	g)				Scaled range R/Q (m/Kg)

